

Mike's Simple Adaptive Block Compression With Silence Compression

©1994 mycal labs www.mycal.net

To Compress a Sample:

Assume BLOCK_SIZE is initialized to a multiple of 16, good values are 80 to 160.

I'm assuming that the data_in[] array is the incoming sample, and that it is filtered with the /4, /2, /4 filter.

I'm also assuming that the data_in[] array is padded to a multiple of the BLOCK_SIZE with 0x80.

Assume data_len = the length of the data_in[] array padded out to a multiple of BLOCK_SIZE;

Initialize Global State Variables before compressing a sample:

Ref_sample = 0x0;

Current_block_pointer=0;

Compress, a block at a time until there is no data left:

While(current_block_pointer<data_len)

compress a block(current_block_pointer);

current_block_pointer= current_block_pointer + BLOCK_SIZE;

Else

 We are done;

Compress and store block:

Calculate Average Step Size:

Prev=data_in[current_sample_pointer] -128; // convert sample to signed, just flip msb on

 // a byte, or flip upper byte on word.

Step_size=0;

For(i=1;i<BLOCK_SIZE;i++)

{

 t=(data_in[i+current_block_pointer]-128);

 step_size=step_size+abs(t - prev);

 prev=t;

}

step_size=step_size/(BLOCK_SIZE/2);

Store step size.

If(step_size!=0) we need to store block

Store Block:

For (i=0;i<BLOCK_SIZE;i++)

{

 t=(data_in[i+current_block_pointer]-128);

 if(t > ref_sample)

 {

 store a 1

 ref_sample=ref_sample + step_size;

}

else

{

 store a 0

 ref_sample=ref_sample - step_size;

}

}

To Uncompress a Sample:

Assume Post Filtering with /4,/2,/4 filter.

Assume BLOCK_SIZE as above.

Assume cdata[] array is an array of bytes produced by the above routine.

Initialize Global State Variables:

Ref_sample = 0x0;

Current_block_pointer=0;

Uncompress_Block:

While(data_pointer<data_len)

 Uncompress_block(data_pointer);

Else

 Were done;

Get Step Size:

Step_size = cdata[data_pointer];

Data_pointer = data_pointer +1;

If(step_size == 0)

{

 //replicate silence

 for(i=0; i< BLOCK_SIZE;i++)

 store ref_sample;

}

else

{

 // replicate waveform from data

For (i=0;i<BLOCK_SIZE;i++)

{

 if(bit=1)

 ref_sample=ref_sample+step_size;

 else

 ref_sample=ref_sample-step_size;

 store ref_sample;

 }

 data_pointer = data_pointer + (BLOCK_SIZE/8);

}

EXAMPLE - compress

This sample does not take in consideration the filter, and it can be assumed that the filter is applied before

the compression takes place.

Eleven.wav - for this example we use a block size of 16. The first 16 data bytes from eleven.wav are :

134, 133, 133, 131, 129, 127, 127, 125, 123, 120, 121, 122, 122, 125, 128, 128

2
nd
 16 bytes are:

122, 118, 120, 124, 132, 140, 142, 139, 131, 123, 118, 120, 127, 133, 138, 139

Converted to signed values are:

6, 5, 5, 3, 1, -1, -1, -3, -5, -8, -7, -6, -6, -3, 0, 0

and

-6, -10, -8, -4, 4, 12, 14, 11, 3, -5, -10, -8, -1, 5 10, 11

First block calculated step size is:

step_size = 3 (step= 28, 28/(block_size/2), 28/(16/2), 28/8)

2
nd
 is :

step_size = 9 (step=79, 79/8)

First Compressed Block is :

0x03 0xC8 0x97

This is Step_size =0x03 plus

Ref_sample=0, step_size=3, 1
st
 value = 6 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = 3

Ref_sample=3, step_size=3, 2
nd
 value = 5 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 6

Ref_sample=6 step_size=3, 3
st
 value = 5 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = 3

Ref_sample=3, step_size=3, 4
th
 value = 3 is less (or =) than Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = 0

Ref_sample=0, step_size=3, 5
st
 value = 1 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = 3

Ref_sample=3, step_size=3, 6
th
 value = -1 is less than Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = 0

Ref_sample=0, step_size=3, 7
th
 value = -1 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample + step_size = -3

Ref_sample=-3, step_size=3, 8
th
 value = -3 is less than (or =) Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = -6

Ref_sample=-6, step_size=3, 9
th

 value = -5 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = -3

Ref_sample=-3, step_size=3, 10
th
 value = -8 is less than Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = -6

Ref_sample=-6 step_size=3, 11
th
 value = -7 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = -9

Ref_sample=-9, step_size=3, 12
th
 value = -6 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = -6

Ref_sample=-6, step_size=3, 13
th
 value = -6 is less than (or =) than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = -9

Ref_sample=-9, step_size=3, 14
th
 value = -3 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = -6

Ref_sample=-6, step_size=3, 15
th
 value = 0 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = -3

Ref_sample=-3, step_size=3, 16
th
 value = 0 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 0

Second Compressed Block is :

0x09 0x3D 0x17

This is Step_size =0x09 plus

Ref_Sample is carried over from the last block, (it = 0 in this case)

Ref_sample=0, step_size=9, 17
th
 value = -6 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = -9

Ref_sample=-9, step_size=9, 18
th
 value = -10 is less than Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = -18

Ref_sample=-18 step_size=9, 19
th
 value = -8 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = -9

Ref_sample=-9, step_size=9, 20
th
 value = -4 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 0

Ref_sample=0, step_size=9, 21
st
 value = 4 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = 9

Ref_sample=9, step_size=9, 22
nd
 value = 12 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 18

Ref_sample=18, step_size=9, 23
rd
 value = 14 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = 9

Ref_sample=9, step_size=9, 24
th
 value = 11 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 18

Ref_sample=18, step_size=9, 25
th

 value = 3 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample + step_size = 9

Ref_sample=9, step_size=9, 26th value = -5 is less than Ref_Sample, Store 0

 Ref_Sample=Ref_Sample - step_size = 0

Ref_sample=0 step_size=9, 27th value = -10 is less than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = -9

Ref_sample=-9, step_size=9, 28
th
 value = -8 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 0

Ref_sample=0, step_size=9, 29
th
 value = -1 is less than than Ref_Sample, Store 0

 Ref_sample=Ref_Sample - step_size = -9

Ref_sample=-9, step_size=9, 30
th
 value = 5 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 0

Ref_sample=0, step_size=9, 31
st
 value = 10 is greater than Ref_Sample, Store 1

 Ref_sample=Ref_Sample + step_size = 9

Ref_sample=9, step_size=9, 32
nd
 value = 11 is greater than Ref_Sample, Store 1

 Ref_Sample=Ref_Sample + step_size = 18

